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We generalize the momentum average approximation to study the properties of single polarons in models
with boson affected hopping, where the fermion-boson scattering depends explicitly on both the fermion’s and
the boson’s momentum. As a specific example, we investigate the Edwards fermion-boson model in both one
and two dimensions. In one dimension, this allows us to compare our results with exact diagonalization results,
to validate the accuracy of our approximation. The generalization to two-dimensional lattices allows us to
calculate the polaron’s quasiparticle weight and dispersion throughout the Brillouin zone and to demonstrate
the importance of Trugman loops in generating a finite effective mass even when the free fermion has an
infinite mass.
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I. INTRODUCTION

One of the most common problems in condensed matter
physics is that of understanding the behavior of a particle
coupled to bosons from its environment, for example an
electron interacting with phonons, magnons, or orbitons of
its host crystal.1–6 The particle becomes “dressed” by a cloud
of bosonic excitations that accompany it. The resulting com-
posite object, generally known as a polaron, can have prop-
erties significantly different from those of the bare
particle.7–9

The theoretical study of these properties is rather difficult
away from the various asymptotic regimes where perturba-
tion theory holds. Of course, a large variety of numerical
techniques have been developed to deal with such
problems,10–16 and many interesting results have been uncov-
ered, although the focus so far has been primarily on rather
simple models such as the Holstein Hamiltonian17,18 that de-
scribes the simplest possible electron-phonon coupling. The
progress on analytical approximations that can efficiently yet
accurately describe the nonperturbative regimes has been
slower. In fact, it is only recently that the so-called momen-
tum average �MA� approximation has been proposed for the
Holstein model and shown to accurately capture its polaronic
behavior in all the parameter space except the extreme adia-
batic limit.19 A way to systematically improve this approxi-
mation, as well as generalizations to certain kinds of more
complex models have been proposed since.20–26 The avail-
ability of such simple yet accurate approximations is impor-
tant, as it allows one to quickly explore large regions of the
parameter space to identify the interesting properties of the
model.

In this work we present the generalization of MA-type
methods to calculate single polaron Green’s functions for
Hamiltonians whose hopping is boson affected. The bosons
are assumed to be dispersionless, i.e., of Einstein type. For
most polaron models, including the one discussed here, the
spin of the fermion is irrelevant and we ignore it. Exceptions
occur, for example, in systems with spin-orbit coupling,
where suitable generalizations can be implemented.24 The

fermion moves on a d-dimensional lattice, which for simplic-
ity is assumed to be hypercubic �generalization to other types
of lattices is straightforward23�. The cases d=1 and d=2 for
the Edwards fermion-boson model27 are discussed in detail
and interesting physics related to the role of closed loops,
possible in two dimensions �2D� but absent in one dimension
�1D�, is uncovered. We note that single polaron properties for
this model have been investigated numerically in 1D,28 and
we use these results to assess the accuracy of MA. We then
extend our method to 2D, where no results are currently
available, and where we illustrate interesting effects of the
boson modulated hopping. Other such models can be treated
similarly.

The general form of the Hamiltonian of interest is

H = �
k

�kck
†ck + ��

q
bq

†bq + �
k,q

g�k,q�
�N

ck−q
† ck�bq

† + b−q� .

�1�

Here, ck and bq are fermion, respectively, boson annihilation
operators, and N is the number of sites in the system. In all
our results we assume periodic boundary conditions and let
N→�, however, finite size systems and/or other types of
boundary conditions can be treated similarly. The sums are
over the Brillouin zone, �k is the free-fermion dispersion
while � is the bosons’ energy �we set �=1�. Note that in Eq.
�1� the fermion-boson scattering depends explicitly on both
the fermion’s and the boson’s momentum. This is to be con-
trasted with simpler cases, such as the Holstein model, where
g�k ,q�→g is a constant, or models where the bosons modu-
late only on-site energies but not the hopping integrals, for
which g�k ,q�→g�q�. The accuracy of MA approximations
for these simpler types of Hamiltonians has been demon-
strated in Refs. 19–21.

We are interested in calculating the single polaron Green’s
function, defined as

G�k,�� = �0�ckĜ���ck
†�0� , �2�

where �0� is the vacuum, Ĝ���= ��−H+ i�	−1 is the resol-
vent associated with the Hamiltonian H, and � is a positive,
infinitesimally small number.
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From the Green’s function we get the spectral weight

A�k,�� = −
1

�
Im G�k,�� �3�

which is measurable by �inverse� angle-resolved photoemis-
sion spectroscopy.29 The lowest-energy pole of A�k ,�� al-
lows us to identify the polaron dispersion E�k�. Its residue is
the quasiparticle �qp� weight,

Zk = ��	k�ck
†�0��2, �4�

i.e., the overlap between the polaron eigenfunction �	k�,
where H�	k�=E�k��	k� and a free-fermion state. Of course,
the spectral weight contains information about the higher
energy states as well but here we will primarily focus on the
low-energy polaron band.

The article is organized as follows. We first introduce the
Edwards fermion-boson model, which is the specific model
with boson-modulated hopping that we will use as an ex-
ample in this work. We then outline the MA approximation
for the simpler 1D case, and use comparison with available
numerical results to analyze its accuracy in various regimes.
Then, we generalize MA for the 2D case and use it to under-
stand the relevance of closed loops for generating a dynami-
cal mass for the dressed quasiparticle. Finally we summarize
our results and conclude.

II. EDWARDS FERMION-BOSON MODEL

The Edwards fermion-boson model27,28 is defined by the
Hamiltonian

H = − tf�
�i,j�

ci
†cj + ��

i

bi
†bi − tb�

�i,j�
ci

†cj�bj
† + bi� , �5�

where the first term describes nearest-neighbor �NN� hop-
ping of the fermion on the lattice of interest, the second term
describes the Einstein boson branch, and the last term is
the boson-modulated hopping. Note that in the limit tf →0, it
is only the last term that allows the fermion to move: hop-
ping from one site to a neighboring one either creates an
excitation at the “departure” site, or removes one from the
“arrival” site. This model provides a way to mimic, for ex-
ample, the motion of a fermion through an antiferromagneti-
cally ordered spin background.3,30,31 For a Neél antiferro-
magnet �AFM� doped with one fermion—which is the zero-
order description of a hole moving in a cuprate CuO2 layer—
the hopping of the fermion reshuffles the spins along its path.
If the spin at the arrival site has the proper orientation, when
it is shuffled to the starting site as the fermion hops it will
have the wrong orientation �a “magnon” defect is created at
the initial site�. Vice versa, if the visited spin has the wrong
orientation, when shuffled by one site it will be properly
aligned �magnon defect removed from the arrival site�. This
is precisely the type of physics described by this boson-
modulated hopping, although it ignores details such as the
hard-core boson constraint for magnons, the fact that in a
Neél AFM the energy of neighboring magnons is not addi-
tive, and also it allows the particle to coexist with bosons at
the same site. The free-fermion hopping term tf, on the other

hand, has to be added when describing motion through a
Heisenberg-type AFM, where spin fluctuations continuously
create and annihilate magnons. Indeed, as shown in Refs. 28
and 32, the free-fermion hopping term can be mapped into a
purely bosonic term of the type 
�i�bi+bi

†� with 

= tf� / �2tb�, which allows the number of magnons to fluctu-
ate.

The “conventional wisdom” is that a fermion in a 2D Neél
AFM �tf =0 case� has an infinite effective mass, because as it
tries to move it creates a costly string of defects which ef-
fectively pin it to its original site. This is, however, not true.
The boson-modulated hopping gives rise to an effective fer-
mion mass even when the bare fermionic mass is infinite
�tf =0�.28,31 For the 1D chain, this is primarily due to the
three-site, three-boson processes sketched in Fig. 1�a� which
result in an effective second NN hopping of the fermion �of
course, more complicated processes involving more bosons
are also possible but they are energetically more costly�. In
Ref. 30, it was noted that in 2D, these collinear processes—
which in 2D give rise to effective third NN hopping—are
supplemented by the closed loop processes sketched in Fig.
1�b�, which give rise to effective second NN hopping. The
importance of such closed loops—known as Trugman
paths—for determining the effective quasiparticle mass has
been emphasized already in Ref. 30 in the context of cu-
prates. In this work, we are the first to explicitly investigate
this phenomenology for the 2D Edwards fermion-boson
model.

While we focus on this Hamiltonian for the remainder of
this work, the MA method can be generalized straightfor-
wardly to other boson-modulated hoppings, like that
appearing in the 1D Su-Schrieffer-Heeger model of
polyacetylene.33 Its phonon-modulated hopping term is pro-
portional to �i�ci

†ci+1+H.c.��bi
†+bi−bi+1

† −bi+1	, i.e., here
phonons can be both absorbed and created at either of the
two sites involved in the hopping process.

III. MOMENTUM AVERAGE APPROXIMATION

One can discuss the meaning of the MA approximations
from several different points of view. One is that this is an

(a)

(b)

FIG. 1. �Color online� Sketch of the three-boson, three-site se-
quence of processes that give rise to effective second NN fermion
hopping. The site occupied by the fermion is shaded and the arrow
indicates the direction of the next tb-hopping process. Each tb hop-
ping either leaves a boson �drawn as a square� at the initial site or
absorbs a boson from the arrival site. Both �a� collinear and �b�
closed loop processes are allowed in 2D; in 1D only �a� is possible.
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approximation which sums semianalytically all diagrams
contributing to the self-energy, however, “exponentially
small” contributions are ignored when calculating the ex-
pression of each such diagram.20 The precise meaning of this
statement will be clarified below.

A more useful starting point for our purposes here is the
variational meaning of MA.20,34 The central idea of polaron
physics is that the dressed quasiparticle—the polaron—
consists of the fermion itself and a cloud of bosons in its
vicinity. MA permits one to systematically select what
bosonic states to keep in the variational space to describe this
cloud, and sum their contributions efficiently. Of course, the
more states kept, the more accurate the results. Physical in-
tuition is needed to decide what is a minimal acceptable
starting point.

In this section, we first describe the MA approximation
for a 1D chain and assess its accuracy against available nu-
merical data. We then briefly review the 2D generalization
and analyze the resulting physics, which has not been inves-
tigated before.

A. MA for the 1D chain

Since we primarily focus on the low-energy polaronic
physics, we will only attempt to describe the polaronic cloud.
The only restriction we impose regards its spatial size, i.e.,
what is the maximum number of neighboring sites that it can
span. The number of bosons at any site in the cloud, as well
as the position of the fermion with respect to the center of
the cloud, are not restricted—they can take any values. A few
of the possible states for a three-site cloud calculation are
sketched in Fig. 2�a�. Of course, any one- and two-site cloud
states belongs to this set.

Note that here we do not allow any bosonic excitations to
occur far from the polaron cloud since they primarily con-
tribute to higher-energy states. In other words, this will be a
MA�0� level approximation.20 Generalization to MA�1� and
higher levels, needed, for example, to describe the polaron
+one-boson continuum, is straightforward although fairly
cumbersome. For example, in MA�1� we also include states
such as sketched in Fig. 2�b�, with one boson arbitrarily far

away from the polaron cloud. Similarly MA�2� allows two
bosons at arbitrary locations away from the cloud, etc. As
detailed below, the physics encoded in these higher-level ap-
proximations does not lead to any qualitative changes for the
properties and parameter ranges that we are interested in.

After deciding on the MA�0� �henceforth called simply
MA� level, the only question left is how big should one
allow the polaron cloud to be. For the Holstein model, a
one-site cloud already gives a remarkably accurate descrip-
tion in any dimension, most everywhere in the parameter
space except intermediate coupling in the adiabatic limit
� / t→0.19,20

For the Edwards model, as already discussed, at least
three-site boson clouds need be considered in order to de-
scribe the leading processes that result in the dynamical gen-
eration of a finite effective mass in the limit tf, 
→0. As a
result, we will start directly by building a variational MA
approximation allowing any number of bosons on any three
consecutive sites, which can be located at any distance from
where the fermion is. To achieve this, we introduce three
types of generalized Green’s functions. The first are

Fn�k,q,�� = �
i

ei�k−q�Ri�0�ckĜ���cq
†bi

†n�0� , �6�

where the ket describes a state of total momentum k �as
required since the Hamiltonian is invariant to translations� of
which the fermion has a momentum q and the cloud of n
bosons, all located at the same site, has momentum k−q.

Next are the two-site cloud Green’s functions, namely,

Fn,m�k,q,�� = �
i

ei�k−q�Ri�0�ckĜ���cq
†bi

†mbi+1
†n−m�0� , �7�

which are defined only for n�2 and 1�m�n−1, so that
they are distinct from the one-site cloud functions Fn�k ,q ,��
defined above. Finally, we have the three-site cloud
functions,

Fn,m,p�k,q,�� = �
i

ei�k−q�Ri�0�ckĜ���cq
†bi−1

†m bi
†n−m−pbi+1

†p �0�

�8�

defined for n�2 and 1�m�n−1, 1� p�n−1, m+ p�n.
These restrictions again avoid overlap with the functions in-
troduced above. Note, however, that they allow bosons to
exist only on the two outer sites of the three-site cloud when
m+ p=n; such states are not accounted for by Fn,m�k ,q ,��.
In principle, one can keep adding other states, either with
more extended clouds, or with bosons far away from the
cloud, until convergence is achieved. For reasons already
explained, for this model we expect that it suffices to stop
here.

The next step is to generate equations of motion for these
generalized Green’s functions. These are obtained by using

the Dyson identity Ĝ���= Ĝ0���+ Ĝ���VĜ0���, where

Ĝ0��� is the resolvent for H0=H−V. This is an exact �non-
perturbative� identity and holds for any partitioning of H
=H0+V. For our purposes, it is convenient to take H0 as the
noninteracting part and V as the boson-modulated hopping

(a)

(b)

FIG. 2. �Color online� �a� Sketch of several states included in
the MA�0� approximation discussed here. The polaron cloud is al-
lowed to extend on up to three neighboring sites, located anywhere
in the system with any number of bosons �shown as red squares� at
each site, and the fermion �shown as a shaded blue circle� at any
distance away from the cloud. �b� Example of extra states included
in a MA�1� level approximation, with a boson arbitrarily far away
from the polaron cloud.
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term. Note that the kets at the right of Ĝ��� in all the above
definitions are eigenstates of H0, so that, for e.g.,

Ĝ0���cq
†bi

†mbi+1
†n−m�0� = G0�q,� − n��cq

†bi
†mbi+1

†n−m�0� , �9�

where

G0�k,�� =
1

� + i� − �k
�10�

is the free-fermion propagator. With this observation, we find
the exact equation of motion for G�k ,�� to be

G�k,�� = G0�k,��
1 − tb�
i

eikRi

�N
�0�ckĜ����ci−1

† + ci+1
† �bi

†�0��
because Vci

†�0�=−tb�ci−1
† +ci+1

† �bi
†�0�. This shows that the

Green’s function of interest to us is linked to various aver-
ages over the Brillouin zone �momentum averages� of the
F1�k ,q ,�� Green’s functions. To make this more precise, we
introduce the real-space counterparts of the generalized
Green’s functions defined above, namely,

fn�k,
,�� =
1

N
�

q

eiq
aFn�k,q,��

= �
i

eikRi

�N
�0�ckĜ���ci−


† bi
†n�0� , �11�

fn,m�k,
,�� =
1

N
�

q

eiq
aFn,m�k,q,��

= �
i

eikRi

�N
�0�ckĜ���ci−


† bi
†mbi+1

†n−m�0� , �12�

and

fn,m,p�k,
,�� =
1

N
�

q

eiq
aFn,m,p�k,q,��

= �
i

eikRi

�N
�0�ckĜ���ci−


† bi−1
†m bi

†n−m−pbi+1
†p �0� .

�13�

The kets on the right of the resolvent continue to describe a
state of total momentum k, however, with the fermion fixed
at a certain distance 
a away from the boson cloud. Here a is
the lattice distance, so that 
 are integers. These definitions
do not necessarily lead to the most “esthetic” final equations
but they are handy and generalize easily to higher dimen-
sions. More symmetric 1D equations can be found if we use
the sin and cos, instead of complex Fourier transforms.

With these notations, we have the exact equation

G�k,�� = G0�k,���1 − tb�f1�k,1,�� + f1�k,− 1,��	
 .

�14�

Let us consider now the equation of motion for Fn�k ,q ,��
with n�1. When acting on cq

†bi
†n�0�, both the boson annihi-

lation and the boson creation part of V will contribute. The
boson annihilation contribution can be calculated exactly

since bosons can only be annihilated at the one site where
they are present. However, the boson creation part can add a
boson either at the site where the cloud is, or to any other site
because a fermion in the state cq

†�0� is delocalized over the
entire chain. Of course, we do not expect all these outcomes
to be equally likely, and it is this that allows us to make
progress.

This is where the MA approximation is made: we only
allow new bosons to be created within at most two-site dis-
tance from where the one-site boson cloud is. In other words,
we allow the boson cloud to extend spatially but not over
more than three consecutive sites since we decided that this
is our variational space. After all possible such terms are
accounted for, we find that within this MA approximation:

Fn�k,q,�� = − tbG0�q,� − n����eiqa + e−iqa�nfn−1�k,0,��

+ �fn+1�k,1,�� + fn+1�k,− 1,��	

+ e−iqa+ika�fn+1,1�k,1,�� + fn+1,1�k,− 1,��	

+ eiqa�fn+1,n�k,0,�� + fn+1,n�k,− 2,��	

+ e−2iqa+ika�fn+1,1,n�k,2,�� + fn+1,1,n�k,0,��	

+ e2iqa−ika�fn+1,n,1�k,0,�� + fn+1,n,1�k,− 2,��	
 .

�15�

The terms on the first two lines come from the exact boson
annihilation part �the first� and the boson creation term where
the new boson is added at the site where the cloud is �the
second�. The terms in lines 3 and 4 describe the contributions
where the new boson is created on a NN site of the cloud.
The terms on the last two lines are the contributions when
the new boson is created on a second NN site of the cloud.

Within the same approximation, we also find

Fn,m�k,q,�� = − tbG0�q,� − n����eiqa + e−iqa�mfn−1,m−1

��k,0,�� + �1 + e2iqa��n − m�fn−1,m�k,− 1,��

+ eiqa�fn+1,m�k,0,�� + fn+1,m�k,− 2,��	

+ �fn+1,m+1�k,1,�� + fn+1,m+1�k,− 1,��	

+ e2iqa−ika�fn+1,m,1�k,0,�� + fn+1,m,1�k,− 2,��	

+ e−iqa�fn+1,1,n−m�k,0,�� + fn+1,1,n−m�k,2,��	

�16�

and

Fn,m,p�k,q,�� = − tbG0�q,� − n����e−2iqa + 1�mfn−1,m−1,p

��k,1,�� + �eiqa + e−iqa��n − m − p�

�fn−1,m,p�k,0,�� + �1 + e2iqa�p

�fn−1,m,p−1�k,− 1,�� + e−iqa�fn+1,m+1,p�k,0,��

+ fn+1,m+1,p�k,2,��	 + �fn+1,m,p�k,1,��

+ fn+1,m,p�k,− 1,��	 + eiqa�fn+1,m,p+1�k,0,��

+ fn+1,m,p+1�k,− 2,��	
 . �17�

As before, creation processes are only allowed to add extra
bosons so that the total cloud does not extend over more than
three consecutive sites. The annihilation processes are treated
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exactly, however, one has to be careful when there is a single
boson on an outside site of the cloud. If this is the annihilated
boson, the size of the cloud decreases. As a result

fn−1,0�k,
,�� → e−ikafn−1�k,
 + 1,�� , �18�

fn−1,n−1�k,
,�� → fn−1�k,
,�� , �19�

fn−1,0,p�k,
,�� → fn−1,n−1−p�k,
,��, if p � n − 1,

�20�

fn−1,0,n−1�k,
,�� → e−ikafn−1�k,
 + 1,�� , �21�

fn−1,m,0�k,
,�� → eikafn−1,m�k,
 − 1,��, if m � n − 1,

�22�

fn−1,n−1,0�k,
,�� → eikafn−1�k,
 − 1,�� . �23�

All these identities follow directly from the definitions of
Eqs. �11�–�13�.

We have thus generated an infinite system of coupled
equations of motion linking various Green’s functions with a
total of n bosons to Green’s functions with n−1 and n+1
bosons. The only approximation is the restriction on the size
of the allowed boson cloud. A solution of this system will
give G�k ,�� within this MA approximation, together with all
the other generalized Green’s functions from which we can
extract additional information on the structure of the polaron
cloud.35

This solution is straightforward to obtain in terms of the
momentum averaged Green’s functions fn. First, note that
only a finite number of these are needed, for a given value of
n, in order to be able to calculate everything else. For ex-
ample, only fn,m,p�k ,
 ,�� with �
��2 appear on the right
hand side of all these equations and similar bounds can be
found for the other functions. We therefore first generate a
set of recurrence equations for these quantities, using Eqs.
�11�–�13�. These read:

fn�
� = − tb�g0�
 + 1,�n� + g0�
 − 1,�n�	nfn−1�0� − tbg0�
,�n�

��fn+1�1� + fn+1�− 1�	 − tbg0�
 − 1,�n�eika�fn+1,1�1�

+ fn+1,1�− 1�	 − tbg0�
 + 1,�n��fn+1,n�0� + fn+1,n�− 2�	

− tbg0�
 − 2,�n�e+ika�fn+1,1,n�2� + fn+1,1,n�0�	 − tbg0�


+ 2,�n�e−ika�fn+1,n,1�0� + fn+1,n,1�− 2�	 , �24�

fn,m�
� = − tb�g0�
 + 1,�n� + g0�
 − 1,�n�	mfn−1,m−1�0�

− tb�g0�
,�n� + g0�
 + 2,�n�	�n − m�fn−1,m�− 1�

− tbg0�
 + 1,�n��fn+1,m�0� + fn+1,m�− 2�	

− tbg0�
,�n��fn+1,m+1�1� + fn+1,m+1�− 1�	

− tbg0�
 + 2,�n�e−ika�fn+1,m,1�0� + fn+1,1,n�− 2�	

− tbg0�
 − 1,�n��fn+1,1,n−m�0� + fn+1,1,n−m�2�	 ,

�25�

and

fn,m,p�
� = − tb�g0�
 − 2,�n� + g0�
,�n�	mfn−1,m−1,p�1�

− tb�g0�
 − 1,�n� + g0�
 + 1,�n�	�n − m

− p�fn−1,m,p�0� − tb�g0�
,�n� + g0�
 + 2,�n�	

�pfn−1,m,p−1�− 1� − tbg0�
 − 1,�n��fn+1,m+1,p�0�

+ fn+1,m+1,p�2�	 − tbg0�
,�n��fn+1,m,p�1�

+ fn+1,m,p�− 1�	 − tbg0�
 + 1,�n��fn+1,m,p+1�0�

+ fn+1,m,p+1�− 2�	 . �26�

Here we used the shorthand notations fn�
�� fn�k ,
 ,��, etc.,
and �n��−n� in order to simplify the notation. Also,

g0�
,�� =
1

N
�

k

eik
aG0�k,�� �27�

are the free propagators in real space, which can be calcu-
lated analytically.19,36 For any given number n of bosons, the
needed Green’s functions are fn,m,p�k ,
 ,�� with �
��2,
fn,m�k ,
 ,�� with �
��3 and fn�k ,
 ,�� with −3�
�4.
Once we know these, we can calculate all other f and F
generalized Green’s functions.

To solve this set of recurrence equations, we order all
Green’s functions with a given n in a vector Vn of dimension
7n+1+5n�n−1� /2. Then, for any n�1, Eqs. �14�–�26� map
into the matrix recurrence equations

Vn = �n�k,��Vn−1 + �n�k,��Vn+1, �28�

where �n�k ,�� and �n�k ,�� are sparse matrices which can
be read directly from Eqs. �14�–�26�. The solution, for any
n�1, has the general form19,20

Vn = An�k,��Vn−1, �29�

where An�k ,�� are given by the continued fractions

An�k,�� =
�n�k,��

1 − �n�k,��An+1�k,��
�30�

starting from a large value N with AN�k ,��=0. The physical
motivation for this choice has been discussed at length
elsewhere.19 Briefly, it is because clouds with too many
bosons N→� are too expensive energetically and therefore
very unlikely to be observed. Hence, the propagators into
such states must become vanishingly small for a large
enough N. In practice one increases N until the matrices
An�k ,�� are converged to within any accuracy one chooses.

Consider now Eq. �29� for n=1. The entries in V0 are the
various f0�k ,
 ,��=eik
aG�k ,�� �see Eq. �11�; the functions
fn,m and fn,m,p are defined only for n�2	. As a result, once
we know the matrix A1�k ,��, we find

f1�k, � 1,�� = a��k,��G�k,�� , �31�

where a��k ,�� are combinations of the appropriate matrix
elements of A1�k ,�� and eik
a factors. Using this in Eq. �14�
gives us the standard solution

G�k,�� =
1

� + i� − �k − ��k,��
�32�

with a self-energy, at this level of MA approximation, of
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��k,�� = − tb�a+�k,�� + a−�k,��	 . �33�

In some limiting cases the model has certain symmetries
that will insure that many of the generalized Green’s func-
tions vanish identically. A simple example is the case tf =0.31

Then the free-fermion dispersion vanishes, �k=−2tf cos�ka�
→0 and so

g0�
,�� → 

,0
1

� + i�
. �34�

This simplifies Eqs. �14�–�26� significantly and one can show
that many of the f functions are identically zero. For ex-
ample, only states f2n,n and f2n+1,n, f2n+1,n+1 survive. This
becomes obvious if one considers what kinds of boson
clouds can be formed if one acts with V repeatedly on any
one-fermion state. By continuity, one expects that for small
tf, these functions will still be very small although not pre-
cisely zero. This fact could be used to speed up the calcula-
tion in this limit, by removing these kets from the variational
set and thus decreasing the size of all these matrices.

In fact, it is known that g0�
 ,�� decreases exponentially
with increasing distance �
� for values ��−2dtf, i.e., below
the free-fermion continuum �d is the dimension�.36 If we are
interested in low-energy properties at ��−2dtf and espe-
cially since �n=�−n� appears in Eqs. �14�–�26�, we see
that most of the terms on the right are multiplied by expo-
nentially small functions if �
��0 in their corresponding
g0�
 ,�n� factor. This explains the earlier statement that the
approximation ignores only exponentially small contribu-
tions. One can check that going to more extended clouds will
bring in more terms in Eqs. �14�–�26� but their g0�
 ,�n�
factors will be even smaller. This argument only becomes
problematic when the ground-state energy is not too far be-
low the free-fermion continuum and � / tf →0. In this case,
g0�
 ,�n� still decays exponentially with increasing 
 but
very slowly, and much more extended clouds may form with
significant probability. For the Holstein model, this leads to
quantitative discrepancies in the MA prediction for interme-
diate couplings, where the polaron cloud can extend over
many sites.37,38 At strong couplings, the Lang-Firsov
approach39 gives a small, one-site cloud polaron, and MA
with a one-site cloud restriction becomes asymptotically ex-
act. No exact asymptotic solution is known for the Edwards
model, therefore there is no guarantee that in the limit � / tf
→0, a three-site cloud will provide a good description. How-
ever, as we show below, MA allows us to decide, with a high
level of confidence, whether it provides a reasonable descrip-
tion.

Finally, let us comment on why we chose to allow a three-
site cloud, as oppose to a one-site or two-site one. Consider
what would happen if we restricted the variational space to
single-site clouds only. Then, we can set all functions fn,m
and fn,m,p identically to zero. From Eq. �14�, we see that the
recurrence relation that now links together only the fn�
�
with 
=−1,0 ,1 does not contain any dependence of k in any
of its terms, resulting in a self-energy that is independent of
k. For example, for tf =0 this would mean that the polaron is
also dispersionless. We know that this is not the case due to
three-site boson processes,28 therefore we need to include at

least such cloud structures in the calculation to capture this.
If � is not too small, one can argue that much more extended
clouds are unlikely for energetical reasons: bosons far from
the particle cost energy � to create yet are unlikely to inter-
act with the particle because of the separation. Of course, one
can increase the size of the cloud systematically until con-
vergence is achieved. Such an exercise allows one to uncover
the physics essential for explaining the properties of the po-
laron, from the importance of various terms play.

B. MA results for the 1D Edwards model

We can analyze the accuracy of the MA approximation for
the Edwards model in 1D, where accurate numerical results
have been obtained using variational exact diagonalization
�ED�.28 We begin with the correlated transport regime tf / tb
�1 �cf. Fig. 1 in Ref. 28�, where polaron motion becomes
possible only through emission/absorption of bosons. This
will be the regime of main interest to us when discussing the
2D problem.

In Fig. 3 we compare spectral weights A�k ,�� at k=0, �
2

and � for � / tb=2, tf / tb=0.1. The agreement between MA
�thin line, shifted upwards� and ED �thick line� results is very
satisfactory, especially for the features with larger weights.
The agreement is of similar quality throughout the whole
Brillouin zone �not shown�. The most prominent features is
the low-energy polaron band, which disperses very little �its
bandwidth is comparable to the smallest energy scale in the
problem, tf�, and has a qp weight that varies little with k.

For a more detailed comparison, we focus on the polaron
band, and plot its energy E�k� vs k in Fig. 4. As expected, for
tf =0 the dispersion corresponds to pure second NN hopping
−2t2 cos�2ka�, where t2 is dynamically generated through the
three-site, three-boson processes. For tf �0, an additional
term −2tf

� cos�ka� with a renormalized transfer amplitude tf
�

is also present. Figs. 4�a� and 4�b� show quite good agree-
ment between MA and ED. As expected, the agreement is
better for the larger � / tb=2 value, where the probability of
more extended clouds is reduced. However, even for the
smaller � / tb=1, MA captures the dispersion quite accu-
rately: most of the difference to the ED results is an overall
shift independent of k. This suggests that more extended
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FIG. 3. �Color online� Spectral weights A�k ,�� for k=0 �top�,
k= �

2 �middle�, and k=� �bottom� from MA �black thin lines� and
ED �red thick lines�. The MA results are shifted upwards to ease the
comparison. Parameters are � / tb=2, tf / tb=0.1, and � / tb=0.02.
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clouds will not further renormalize the effective hopping in-
tegrals, only lower the overall polaron formation energy.
This is reasonable because longer range effective hopping
terms are more complicated to generate and involve many
more sites than the three-site, three-boson process respon-
sible for t2. It is therefore probably safe to conclude that MA
accurately describes the polaron’s dynamics in the tf / tb�1
region, so long as � / tf is not too small so that the spatial
Green’s functions decay exponentially reasonably fast.

As � / tb is decreased we expect to move in the regime of
“strong fluctuations”.28 The low-energy part of the spectral
weight in this regime is shown in Fig. 5 for � / tb=0.5,
tf / tb=0.04. Because the cost of exciting bosons is reduced,
we expect to see many more lower-energy features than in
Fig. 3 and this is indeed the case. MA shows reasonable
agreement with ED at the lower energies, however, some of
the higher-energy peaks are either missing, or displaced, or
combined in a single feature. In order to properly describe
these peaks, it is likely that one would need to go to the
MA�1� or higher level approximations, where bosons are al-
lowed to exist far from the main polaron cloud �cf. Fig.
2�b�	. Such states are essential in describing the polaron
+one boson continuum starting at Egs+�,12,20 and indeed, it
is at these energies that the disagreements between MA and
ED become more visible. If, however, the focus is on under-

standing the polaron band and if the polaron bandwidth is
less than � �as is the case we discuss in 2D, below�, then
inclusion of these states is not absolutely necessary: doing so
will improve the quantitative agreement, of course, but will
not change qualitatively the polaron dispersion.

Next we explore the “incoherent” or “diffuse” region of
the parameter space, where tb /��1 while tb / tf �1.28 Since
this implies �� tf, this is where the MA approximation is
expected to be least accurate. In Fig. 6 we show comparisons
of the spectral function A�k ,�� vs � for small values of k. At
k=0 �upper panel�, ED shows two sharp peaks, associated
with the polaron and the second bound state,12,20 followed by
the polaron+one boson continuum at Egs+� and then more
features at higher energies. MA finds the two peaks associ-
ated with the bound polaron states, shifted to slightly higher
energies, but the continuum is absent since, as discussed, it is
not included in the variational space at this MA level. As k
increases, the spectral weight �equal to the area under the
peak� in the polaron band decreases extremely fast, similar to
what happens for Holstein polarons at weak coupling11,20,40,41

and most of the weight shifts to roughly �=�k. The lower
panels of Fig. 6 illustrate this fast decrease in the polaron
band spectral weight as k increases.41 We also see that even
though the polaron band predicted by MA is shifted upwards,
this shift is again not strongly k dependent. The qp weight is
also in good agreement with the ED results, so MA is still
doing a reasonable job in predicting the qp weight and ef-
fective mass. However, at larger k, the absence of the con-
tinuum within this level of MA approximation is expected to
lead to an overestimate of the polaron bandwidth.19

This is indeed the case, as shown in Fig. 7, where we
compare the polaron dispersions E�k� vs k for �=0.5tb and
tf / tb=2,4 ,20, so that � /2tf =0.125, 0.0625, respectively,
0.0125. The agreement at large k worsens as � / tf →0. This
is because in all these cases the bandwidth of the MA E�k�
exceeds �, which is unphysical: the polaron band must al-
ways stay below the continuum. It follows that in this re-
gime, the polaron+one boson continuum plays the key role
in defining the polaron bandwidth. To describe it within MA,
one needs to allow at least one boson to be far away from the
polaron, i.e., to go to the MA�1� level. The simpler MA�0�

level approximation used here is certainly untrustworthy at
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FIG. 4. �Color online� Polaron energy E�k� in units of tb vs k,
for the parameters indicated. Lines show ED results, symbols show
MA results �dashed lines are guide to the eyes�.
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FIG. 5. �Color online� Spectral weights A�k ,�� for k=0 �top�,
k= �

2 �middle�, and k=� �bottom� from MA and ED. The MA re-
sults �black thin lines� are shifted upwards. The parameters are
� / tb=0.5, tf / tb=0.04, and � / tb=0.002.
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MA results are shifted upwards. The parameters are � / tb=0.5,
tf / tb=4, and � / tb=0.006.
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large k in such cases. However, it still provides reasonably
good description near k=0, as shown in Figs. 6 and 7. For
example, the ED polaron dispersion shows a “kink” at small
k, whose origin we do currently understand. This feature is
more pronounced as � / tf decreases and is indicated by the
arrows in Fig. 7. MA also replicates it, albeit at somewhat
different location. Below this value, the two dispersions
seem to match quite well �up to an overall shift�. We con-
clude that even in this least favorable regime and for this
lowest level of MA, we can still use it to get reasonable
estimates for the polaron effective mass and ground-state qp
weight. This is verified by the data presented in Table I,
where we compare the effective masses �in dimensionless
units�,

1

m�
=

1

a2tb
� �2E�k�

�k2 �
k=0

�35�

calculated with the two methods.
To summarize, these comparisons confirm that if the MA

polaron bandwidth is less than � so that the continuum can
be ignored, then this level of MA approximation suffices to
describe E�k� with good accuracy throughout the Brillouin
zone. This is generically expected to hold so long as � / tf is
not too small, in other words for most of the parameter
space. In the limit of small � / tf, the lowest MA approxima-
tion suffices for a reasonable description of GS properties,
but one needs to go to higher MA levels and enlarge the
variational space if one wants to have a good description of
E�k� in all the Brillouin zone. The same holds true if one

wants an accurate description at energies above the polaron
band. Because the MA approximations generically satisfy
with good accuracy spectral weight sum rules,19,20 one ex-
pects even the lowest MA level to identify quite correctly
where significant spectral weight appears in the spectrum.
This is indeed the case, as shown in the comparisons pro-
vided here �regarding Fig. 7, one must remember that there is
essentially no spectral weight in the qp band once it gets
close to the continuum�. However, in order to capture finer
details, one needs to work harder by suitably enlarging the
variational space. In practice, this requires one to figure out
the corresponding equivalent of Eqs. �14�–�26� and find an
efficient way to solve them.

In the following, we focus on the polaron dispersion of
the 2D Edwards model in the limit tf / tb→0 for a finite � / tb
ratio. In this case, the MA level introduced here—suitably
generalized to 2D—is sufficient for an accurate description
of E�k� in the entire Brillouin zone, therefore we do not need
to go to a higher level.

C. MA for the 2D square lattice

To generate the MA equations—within the three-site
cloud variational space—for a 2D square lattice, we follow
the steps outlined in the previous section. The only compli-
cation is that now the two-site clouds can be aligned either
along the x or y directions, so we need two types of two-site
cloud generalized Green’s functions,

Fn,m
��� �k,q,�� = �

i

ei�k−q�Ri�0�ckĜ���cq
†bi

†mbi+�
†n−m�0� �36�

with the associated

fn,m
��� �k,�,�� =

1

N
�

q

eiq�aFn,m
��� �k,q,��

= �
i

eikRi

�N
�0�ckĜ���ci−�

† bi
†mbi+�

†n−m�0� , �37�

where �= �1,0�=x or �= �0,1�=y, each site index is two-
dimensional, e.g., i= �ix , iy�, and we used the shorthand nota-
tion i+�= �ix+1, iy� if �=x etc. As in 1D, we ask that
1�m�n−1 to avoid overlap with the one-site cloud func-
tions.

For the three-site clouds, we define

Fn,m,p
��,����k,q,�� = �

i

ei�k−q�Ri�0�ckĜ���cq
†bi−�

†m bi
†n−m−pbi+��

†p �0� ,

�38�

fn,m,p
��,����k,�,�� =

1

N
�

q

eiq�aFn,m,p
��,����k,q,��

= �
i

eikRi

�N
�0�ckĜ���ci−�

† bi−�
†m bi

†n−m−pbi+��
†p �0� .

�39�

To describe collinear clouds we take �=��, and we again
need only keep �=x ,y for the two possible orientations. For
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TABLE I. Comparison of effective masses as predicted by ED
�Ref. 42� and MA, for several values of � and tf where tb=1.

� tf mED
� mMA

�

1.0 0.00 17.71 18.12

1.0 0.01 15.75 15.51

2.0 0.00 129.28 129.98

2.0 0.01 44.68 44.77

0.5 2.00 1.54 1.39

0.5 4.00 0.61 0.47

0.5 20.00 0.052 0.041
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noncollinear clouds we have four different distinct possibili-
ties which we choose as �= �x= ��1,0� and ��= �y
= �0, �1�, as sketched in Fig. 8. They are inequivalent ex-
cept when m+ p=n, so that there are bosons only on the
opposite diagonal sites. Again, only m�1 and p�1 are al-
lowed.

The equations for the various F and f functions are gen-
erated just as in the 1D case, using the restriction that boson
addition contributions cannot extend the boson cloud to more
than three neighboring sites. This again leads to a set of
equations for a finite number of n-boson functions f which
depend only on n−1 and n+1 boson f functions. While
straightforward to obtain, these equations are very lengthy
�e.g., the equation for fn�k ,� ,�� has 64 contributions on the
right-hand side	, and we do not list all of them here. As an
example, the relevant equations for the three-site cloud func-
tions are listed below, using again the shorthand notations

fn,m,p
��,������� fn,m,p

��,����k ,� ,�� and �n=�−�:

fn,m,p
��,������ = − mtb �

��=�x,�y

g0�� + �� − �,�n�fn−1,m−1,p
��,��� ���

− �n − m − p�tb �
��=�x,�y

g0�� + ��,�n�fn−1,m,p
��,��� �0�

− ptb �
��=�x,�y

g0�� + �� + ��,�n�fn−1,m,p−1
��,��� �− ���

− tbg0�� + �,�n� �
��=�x,�y

fn+1,m+1,p
��,��� �� + ���

− tbg0��,�n� �
��=�x,�y

fn+1,m,p
��,��� ���� − tbg0

��� − ��,�n� �
��=�x,�y

fn+1,m,p+1
��,��� ��� − ��� . �40�

An analysis of the terms occurring on the right-hand sides
of these equations allows one to identify the minimum set of
values � needed for the various f functions. These are shown

explicitly for a collinear and one noncollinear cloud in Fig.
9. There, the thick lines mark the position of the cloud,
which is centered at i while the dots show the locations of
the fermion. The distances from the fermion to the site i
define the needed set of � values for these clouds. The other
three-site clouds have sets related by appropriate symmetries.
The sets for the two-site and one-site clouds are found simi-
larly.

Once this is done, the solution follows that used in 1D.
All functions with a given n are collected in a vector Vn. The
equations of motions again reduce to matrix recurrence equa-
tions Vn=�n�k ,��Vn−1+�n�k ,��Vn+1 which are solved in
precisely the same way. Of course, the dimension of Vn is
now significantly increased, dim�Vn�=31n2−15n−3, and
therefore the various matrices An ,�n ,�n needed are larger
than in 1D, however, they are still very manageable. Most
results shown below converged with relative errors less than
10−4 if we started from AN=0 with N=9 or less, so that the
largest vectors’ dimension is below 2000. Moreover, their
dimensions decrease fast as n decreases, so the solution is
still very efficient. In the plots shown below, a data point
typically takes around a minute or less to generate.

We begin with a thorough analysis of the most interesting
case, when tf =0. In this case, only the three-site, three-boson
terms already discussed will lead to dynamic generation of
a polaron dispersion. We already know from the 1D case
that we expect the generation of terms of the type
�−2t3�cos�2kxa�+cos�2kya�	 from the collinear clouds �on
the 2D lattice, this corresponds to effective third NN hop-
ping, hence t3�. However, because of the closed path �Trug-
man loops� processes that are now also possible, we also
expect dynamic generation of second NN hopping, leading to
terms of the type �−2t2�cos��kx+ky�a	+cos��kx−ky�a	
. Al-
together, then, in this case the polaron dispersion should be
well described by

E�k� = EP − 2t2�cos��kx + ky�a	 + cos��kx − ky�a	 − 2


− 2t3�cos�2kxa� + cos�2kya� − 2	 , �41�

where EP=E�k=0� is the polaron ground state energy. From
the 1D analysis, we expect that t2 and t3 should be quite
accurately predicted by MA while EP is only accurate at
fairly high � and becomes systematically underestimated as
� decreases.

In Fig. 10 we plot the polaron dispersion E�k� and qp
weight Z�k� along lines of high symmetry in the Brillouin
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FIG. 8. �Color online� Sketch of our choice of � ,�� indices for
the n-boson noncollinear three-site boson clouds on the 2D square
lattice. In all cases, m�1 bosons are at site i−�, p�1 bosons are
at site i+�� and the remaining n−m− p bosons are at site i.

i

i

FIG. 9. �Color online� Pictorial description of the minimal sets
of values � needed for a collinear �left� and noncollinear �right�
three-site cloud generalized function fn,m,p���. Red solid lines indi-
cate the boson cloud centered at i while the blue dots mark the
possible locations of the fermion. The distances from the fermion to
the site i define the needed set of � values.
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zone. Interestingly, the two curves have similar profiles,
however, the qp weight changes very little in real terms. This
is somewhat reminiscent of Holstein polarons in the strong-
coupling limit, which also have an almost constant qp weight
throughout the Brillouin zone. However, in that limit their qp
weight is exponentially small and the effective mass is expo-
nentially large whereas here the qp weight is still consider-
able, as is the polaron bandwidth. This shows that very dif-
ferent physics gives rise to this behavior. Indeed, the small
Holstein polaron has a small-size cloud with a large average
number of bosons. This explains its very large effective mass
�due to vanishing overlap of the spatially small polaron
cloud�, the very small qp weight �free-fermion contribution
to the wavefunction is very small�, and its weak sensitivity to
k �states that are nearly localized in real space are “ex-
tended” in k space�. In contrast, for the Edwards model po-
laron at tf =0, all the dispersion is due to the existence of
bosons through the boson-assisted hopping. As illustrated
in Fig. 1, the free-fermion state mixes with the various
fermion+bosons states to give rise to the effective second
and third NN hopping, so the fairly significant qp weight
throughout the Brillouin zone is not surprising. It is worth
emphasizing again that the doubling of the Brillouin zone is
due to the boson-modulated hopping. In fact, the resulting
dispersion is somewhat reminiscent of that of a doped hole in
a cuprate layer, although there the minimum is at � �

2a , �
2a �,

which here is a saddle point.
The symbols in Fig. 10 are fits to Eq. �41�. Specifically,

we used the MA values for E�0,0�, E� �
2 , �

2 �, and E�0,�� in
order to extract EP, t2, and t3 from Eq. �41�, and use these to
generate the dispersion-fit in the entire Brillouin zone. The
agreement is very reasonable, backing up our assumptions
about polaronic physics in this regime. The only problem is
that t3� t2, EP, and as a result the level of confidence in
extracting this parameter is not very high. For example, if we
use E�0, �

2 � instead of E� �
2 , �

2 � as the third point, the value of
t3 changes from 0.0023 to 0.0018 �EP, t2 remain unchanged�
but the agreement between the overall fit and E�k� is visibly
poorer.

In Fig. 11 we study the dependence of t2, t3, and EP on
� / tb when tf =0. The full lines show converged MA results
�except for very small �, see below� whereas the symbols
show the MA results with the restriction that we only allow
clouds with up to three bosons �A4=0�. As expected, at large
� the agreement is very good: we know that we need clouds
with at least three bosons to generate the effective hoppings,
and because � is large, it is very unlikely to have larger
clouds. This is further confirmed by the insets, which show
that in the limit tb /�→0, both effective hoppings scale such
as tb

6 /�5, as expected for the three-boson, three-site pro-
cesses from perturbation theory. The fits also confirm that in
this limit, t2 / t3=4. This is because there is constructive in-
terference in going about the Trugman loops clockwise and
anticlockwise to generate t2 while t3 can only be generated in
a unique way.

As � decreases below roughly 2tb, we see that t2, t3 be-
come, at first, larger than the corresponding three-boson val-
ues. Indeed, here we have to use larger clouds to achieve full
convergence and processes with more than three bosons will
further increase the effective hoppings. Surprisingly, for
� / tb�0.7 or so, t2 and t3 start to decrease fast. Here many-
boson processes lead to a decrease in the effective hoppings
from what the simple three-boson scenario would predict.
Convergence of the various quantities in dependence on the
maximum number N of bosons allowed in the cloud is shown
in Fig. 12 for � / tb=0.4 �upper panels� and for � / tb=1
�lower panels�. The data indeed confirm that four and more
boson terms have different effects on the effective hoppings
for �� tb and �� tb.

It is also clear that in the limit � / tb→0 our results are
untrustworthy, because we ignore longer loops that also con-
tribute to the effective hoppings in this regime. For example,
just as the six-step Trugman loop on a 2�2 plaquette con-
tributes to second NN hopping, the Trugman loops on 2�3
plaquettes will contribute to both second and third NN hop-
ping �depending on how the fermion goes around the loop�
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and these contributions will supplement the values obtained
from the processes included here. Its contributions scale as-
ymptotically such as tb

11 /�10 because they involve a five-
boson cloud and 11 hoppings to first create and then annihi-
late all of them. This is to be contrasted to tb

6 /�5 scaling for
the contributions included in the three-site cloud MA.
Clearly, once �� tb we cannot ignore the contribution of
these longer loops. This is why it is also pointless to go to
larger N to find the fully converged values for the � / tb
=0.4 in Fig. 12. However, a good estimate of the crossover is
difficult to obtain from such perturbation theory arguments
since the insets in Fig. 11 reveal that the asymptotic expres-
sions are only valid at much larger � / tb values.

A better criterion is to take the value � / tb above which
convergence is achieved for a cutoff equal to or less than six,
signaling that five or more boson processes are not contrib-
uting much to the polaron wavefunction, and therefore
longer loops can be ignored safely. This definition is not
going to produce a very sharp value since these contributions
change gradually. From Fig. 12 we see that for � / tb=1, the
change in going from N=4 to N=5 modifies various quanti-
ties by up to about 4%, therefore this is likely already in the
regime where longer loops are not playing an important role.
Once five-boson processes become important, we need to
include in the variational calculation at least the 3�2 loops
which will modify both t2 and t3. This is why the numbers
shown in Fig. 11 are likely not valid for small �. This is an
example of how a MA approximation can signal its potential
problems but also how to fix them �here, extension to at least
five-site polaron clouds is needed at lower ��.

In any case, the boson-modulated hopping is responsible
for dynamically generating a finite effective �dimensionless�
mass m�= tb / �t2+2t3��14 or so, even though the free par-
ticle has an infinite mass.

We next discuss the case of finite tf, in the limit tf �� and
� / tb�1 where the results of this approximation are ex-
pected to be valid. The main change in the polaron disper-
sion is that it will also acquire NN contributions, so now

E�k� = EP − 2tf
��cos�kxa� + cos�kya� − 2	 − 2t2

��cos��kx + ky�a	 + cos��kx − ky�a	 − 2
 − 2t3

��cos�2kxa� + cos�2kya� − 2	 , �42�

where tf
� is renormalized due to polaron cloud overlap.

The polaron dispersion is shown in Fig. 13 for tf =0.1tb
and �= tb. A comparison with Fig. 10 reveals that the small
tf has a significant effect on E�k�, especially near the edges
of the Brillouin zone. The symbols show fits to Eq. �42�.
Here, the values for EP, tf

�, t2, and t3 were extracted from the
energies at the special points �0,0�, � �

2 , �
2 �, �0,��, and �� ,��.

Using these parameters in Eq. �42� leads to good agreement
with the MA results �thick lines�. We find that tf

� / tb=0.040,
t2 / tb=0.0090, and t3 / tb=0.0026. Interestingly while tf

�� tf,
as expected in polaronic physics, we see that in the presence
of a finite tf, both t2 and t3 are larger than when tf =0. This is
because the effective hopping integrals generated by the
three-boson processes discussed so far are here supple-
mented by the usual longer-range polaron hopping known to
occur in the intermediate-to-strong electron-phonon coupling
limit.40,41 Just as for tf =0, the qp weight changes little
throughout the Brillouin zone; it is close to 0.3 everywhere.
The lower panels in Fig. 13 show the convergence of the
various effective hopping amplitudes and of the ground-state
energy as the maximum number of bosons N increases. Spe-
cifically, we plotted the relative errors which reveal that five
or more boson processes contribute less than 4% to the vari-
ous quantities.

The dependence of tf
�, t2, t3, and EP on � / t is shown in

Fig. 14 for two values of tf. The data is only displayed over
the range where five-boson processes contribute less than 1%
to the various parameters, so that longer Trugman loops can
be safely ignored. As expected, tf

� increases towards tf as �
increases because this leads to fewer bosons in the polaronic
cloud, i.e., less “dressing” of the quasiparticle. On the other
hand, t2 and t3 decrease with increasing �, as this makes the
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intermediary many-boson states less likely. As already dis-
cussed, their values increase with increasing tf, for a fixed
value of �. Finally, we note that EP is well below the free
particle continuum starting at −4tf. This, together with the
fact that longer loops are irrelevant, guarantees that the ap-
proximation must be quantitatively accurate in this regime.

IV. SUMMARY AND DISCUSSIONS

The main goal of this work is to demonstrate how the MA
approximations can be generalized to study polaron forma-
tion in models with boson-affected fermion hopping. Unlike
for simpler local fermion-boson couplings as in the Holstein
polaron model, where the strong-coupling Lang-Firsov solu-
tion is known and can guide the choice for the maximum
extension of the polaron cloud, here this solution is not avail-
able. As illustrated for the Edwards fermion-boson model,
one now needs to use physical intuition to make a reasonable
choice. Of course, one can always systematically increase the
variational space and check that the initial guess was indeed
reasonable.

Because we are interested primarily in the low-energy po-
laron physics, we used the MA�0� level of approximation
which describes only the polaron cloud and does not allow
for far-flung bosonic excitations. Then, the only free “param-
eter” is the spatial size of the polaronic cloud. Simple argu-
ments regarding the processes illustrated in Fig. 1 show that
at least three-site clouds need to be allowed and therefore we
built the approximation for this case. Careful consideration
of the terms ignored gives us intuition about when the ap-
proximation is expected to be accurate and when and in
which way it becomes problematic. In 1D, this was indeed
verified successfully against available exact numerical re-
sults.

We then extended the calculation to 2D, where no results
were available for this model until now and demonstrated

that the closed Trugman loops play the key role in determin-
ing the effective mass of the quasiparticle in the limit tf =0.
In this regime, the results for the three-site MA calculation
are trustworthy for �� tb; for smaller � values, one needs to
increase the allowed size of the polaron cloud since longer
Trugman loops are also becoming important. We emphasize
that the MA approximation is not wrong in the low � limit;
what failed is our guess about the relevant size of the polaron
cloud. If this is increased from three to more sites, the ap-
proximation will become accurate again.

The important role played by Trugman loops raises a very
important question regarding the motion of a particle through
an AFM background �which, as discussed, the Edwards
fermion-boson model partly mimics�. For t-J models, it has
been argued that the interaction of the hole with spin-waves
is well described within the self-consistent Born approxima-
tion. This approximation includes only noncrossing dia-
grams, i.e., processes where the bosons are absorbed in in-
verse order to the one in which they have been emitted by
the particle. This is because it is generally expected that the
particle needs to retrace its path to “heal” the string of de-
fects it created when it reshuffled the spins. For a Neél AFM,
the self-consistent Born approximation therefore predicts an
infinitely heavy quasiparticle. In the presence of spin-
fluctuations, the magnons can disperse and this gives rise to
a finite quasiparticle mass.

What is shown here is that the quasiparticle can acquire a
finite spin mass even in the absence of spin fluctuations, by
going �almost� twice around closed loops, first creating a
string of defects and then healing it. Note that in diagram-
matic terms, this would correspond to maximally crossed
diagrams since here the bosons are absorbed in the same
order in which they were emitted. Such processes are obvi-
ously not included in the self-consistent Born approximation.

Of course, one might argue that spin fluctuations are rel-
evant for holes in cuprates, in other words tf may be consid-
erable and therefore dominate E�k�, as we found it to be the
case for the Edwards model for tf �0. In other words, that
the Trugman loops’ contributions, although finite, may be
quantitatively insignificant. However, the interesting thing is
that these closed loop processes give rise to the only contri-
butions in E�k� which are consistent with the doubling of the
unit cell. ARPES on the parent insulators, i.e., for a single
quasiparticle introduced in a Cu02 layer, clearly exhibits
this doubling of the Brillouin zone.29 This suggests that
maybe this problem should be revisited using MA-type
approximations.

ACKNOWLEDGMENTS

The authors would like to thank A. Alvermann and D. M.
Edwards for valuable discussions. This work was supported
by NSERC and CIfAR �M.B.�, and by Deutsche Forschungs-
gemeinschaft through SFB 652 �H.F.�.

1 2 3 4
Ω/t

b

0.000

0.002

0.004

t
3
/t

b

1 2 3 4
Ω/t

b

-2.5

-2.0

-1.5

E
P
/t

b

1 2 3 4
Ω/t

b

0.05

0.10

0.15

t
f

*/t
b

1 2 3 4
Ω/t

b

0.000

0.005

0.010

t
2
/t

b

FIG. 14. �Color online� The effective hopping integrals and the
polaron energy, in units of tb, vs � / tb, for tf =0.1tb �black solid line�
and tf =0.2tb �red dashed line�. The results are only shown for �
values where five or more boson processes become irrelevant.

MONA BERCIU AND HOLGER FEHSKE PHYSICAL REVIEW B 82, 085116 �2010�

085116-12



1 H. Fröhlich, Adv. Phys. 3, 325 �1954�.
2 Y. A. Firsov, Polarons �Nauka, Moscow, 1975�.
3 C. L. Kane, P. A. Lee, and N. Read, Phys. Rev. B 39, 6880

�1989�.
4 G. Martinez and P. Horsch, Phys. Rev. B 44, 317 �1991�.
5 K. Wohlfeld, A. M. Oleś, and P. Horsch, Phys. Rev. B 79,

224433 �2009�.
6 M. Berciu, Phys. 2, 55 �2009�.
7 L. D. Landau, Phys. Z. Sowjetunion 3, 664 �1933�.
8 Polarons in Bulk Materials and Systems with Reduced Dimen-

sionality, International School of Physics Enrico Fermi Vol. 161,
edited by G. Iadonisi, J. Ranninger, and G. D. Filipis �IOS Press,
Amsterdam, 2006�.

9 Polarons in Advanced Materials, Springer Series in Material Sci-
ences Vol. 103, edited by A. S. Alexandrov �Springer, Dordrecht,
2007�.

10 E. Jeckelmann and H. Fehske, Riv. Nuovo Cimento 30, 259
�2007�.

11 H. Fehske and S. A. Trugman, in Polarons in Advanced Materi-
als, Springer Series in Material Sciences Vol. 103, edited by A.
S. Alexandrov �Canopus/Springer, Dordrecht, 2007�, pp. 393–
461.

12 J. Bonča, S. A. Trugman, and I. Batistić, Phys. Rev. B 60, 1633
�1999�.

13 G. De Filippis, V. Cataudella, V. Marigliano Ramaglia, and C. A.
Perroni, Phys. Rev. B 72, 014307 �2005�.

14 P. E. Kornilovitch, Phys. Rev. Lett. 81, 5382 �1998�.
15 M. Hohenadler, H. G. Evertz, and W. von der Linden, Phys. Rev.

B 69, 024301 �2004�.
16 N. V. Prokof’ev and B. V. Svistunov, Phys. Rev. Lett. 81, 2514

�1998�.
17 T. Holstein, Ann. Phys. �N.Y.� 8, 325 �1959�.
18 T. Holstein, Ann. Phys. �N.Y.� 8, 343 �1959�.
19 M. Berciu, Phys. Rev. Lett. 97, 036402 �2006�; G. L. Goodvin,

M. Berciu, and G. A. Sawatzky, Phys. Rev. B 74, 245104
�2006�.

20 M. Berciu, Phys. Rev. Lett. 98, 209702 �2007�; M. Berciu and
G. L. Goodvin, Phys. Rev. B 76, 165109 �2007�.

21 G. L. Goodvin and M. Berciu, Phys. Rev. B 78, 235120 �2008�.
22 L. Covaci and M. Berciu, EPL 80, 67001 �2007�.
23 L. Covaci and M. Berciu, Phys. Rev. Lett. 100, 256405 �2008�.
24 L. Covaci and M. Berciu, Phys. Rev. Lett. 102, 186403 �2009�.
25 M. Berciu, A. S. Mishchenko, and N. Nagaosa, EPL 89, 37007

�2010�.
26 G. L. Goodvin, L. Covaci, and M. Berciu, Phys. Rev. Lett. 103,

176402 �2009�.
27 D. M. Edwards, Physica B 378-380, 133 �2006�.
28 A. Alvermann, D. M. Edwards, and H. Fehske, Phys. Rev. Lett.

98, 056602 �2007�.
29 A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75,

473 �2003�.
30 S. A. Trugman, Phys. Rev. B 37, 1597 �1988�.
31 A. Alvermann, D. M. Edwards, and H. Fehske, J. Phys.: Conf.

Ser. 220, 012023 �2010�.
32 H. Fehske, A. Alvermann, and G. Wellein, in High Performance

Computing in Science and Engineering, Garching/Munich 2007,
edited by S. Wagner, M. Steinmetz, A. Bode, and M. Brehm
�Springer-Verlag, Berlin, 2009�, pp. 649–668.

33 W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42,
1698 �1979�.

34 O. S. Barišić, Phys. Rev. Lett. 98, 209701 �2007�.
35 M. Berciu, Can. J. Phys. 86, 523 �2008�.
36 E. N. Economou, Green’s Functions in Quantum Physics

�Springer-Verlag, Berlin, 1983�.
37 G. Wellein and H. Fehske, Phys. Rev. B 58, 6208 �1998�.
38 A. Alvermann, H. Fehske, and S. A. Trugman, Phys. Rev. B 81,

165113 �2010�.
39 I. G. Lang and Y. A. Firsov, Zh. Eksp. Teor. Fiz. 43, 1843 �1962�

�Sov. Phys. JETP 16, 1301 �1963�	.
40 W. Stephan, Phys. Rev. B 54, 8981 �1996�.
41 G. Wellein and H. Fehske, Phys. Rev. B 56, 4513 �1997�.
42 A. Alvermann �private communication�.

MOMENTUM AVERAGE APPROXIMATION FOR MODELS… PHYSICAL REVIEW B 82, 085116 �2010�

085116-13

http://dx.doi.org/10.1080/00018735400101213
http://dx.doi.org/10.1103/PhysRevB.39.6880
http://dx.doi.org/10.1103/PhysRevB.39.6880
http://dx.doi.org/10.1103/PhysRevB.44.317
http://dx.doi.org/10.1103/PhysRevB.79.224433
http://dx.doi.org/10.1103/PhysRevB.79.224433
http://dx.doi.org/10.1103/Physics.2.55
http://dx.doi.org/10.1393/ncr/i2007-10021-y
http://dx.doi.org/10.1393/ncr/i2007-10021-y
http://dx.doi.org/10.1103/PhysRevB.60.1633
http://dx.doi.org/10.1103/PhysRevB.60.1633
http://dx.doi.org/10.1103/PhysRevB.72.014307
http://dx.doi.org/10.1103/PhysRevLett.81.5382
http://dx.doi.org/10.1103/PhysRevB.69.024301
http://dx.doi.org/10.1103/PhysRevB.69.024301
http://dx.doi.org/10.1103/PhysRevLett.81.2514
http://dx.doi.org/10.1103/PhysRevLett.81.2514
http://dx.doi.org/10.1016/0003-4916(59)90002-8
http://dx.doi.org/10.1016/0003-4916(59)90003-X
http://dx.doi.org/10.1103/PhysRevLett.97.036402
http://dx.doi.org/10.1103/PhysRevB.74.245104
http://dx.doi.org/10.1103/PhysRevB.74.245104
http://dx.doi.org/10.1103/PhysRevLett.98.209702
http://dx.doi.org/10.1103/PhysRevB.76.165109
http://dx.doi.org/10.1103/PhysRevB.78.235120
http://dx.doi.org/10.1209/0295-5075/80/67001
http://dx.doi.org/10.1103/PhysRevLett.100.256405
http://dx.doi.org/10.1103/PhysRevLett.102.186403
http://dx.doi.org/10.1209/0295-5075/89/37007
http://dx.doi.org/10.1209/0295-5075/89/37007
http://dx.doi.org/10.1103/PhysRevLett.103.176402
http://dx.doi.org/10.1103/PhysRevLett.103.176402
http://dx.doi.org/10.1016/j.physb.2006.01.307
http://dx.doi.org/10.1103/PhysRevLett.98.056602
http://dx.doi.org/10.1103/PhysRevLett.98.056602
http://dx.doi.org/10.1103/RevModPhys.75.473
http://dx.doi.org/10.1103/RevModPhys.75.473
http://dx.doi.org/10.1103/PhysRevB.37.1597
http://dx.doi.org/10.1088/1742-6596/220/1/012023
http://dx.doi.org/10.1088/1742-6596/220/1/012023
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.98.209701
http://dx.doi.org/10.1139/P07-160
http://dx.doi.org/10.1103/PhysRevB.58.6208
http://dx.doi.org/10.1103/PhysRevB.81.165113
http://dx.doi.org/10.1103/PhysRevB.81.165113
http://dx.doi.org/10.1103/PhysRevB.54.8981
http://dx.doi.org/10.1103/PhysRevB.56.4513

